STATIONARY FLOW OF COMPOSITE CAPILLARY JETS
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Stationary axisymmetric flow of spiral capillary jets, consisting of immiscible liquids,
is studied. Composite capillary jets are used in a number of technological processes. An
example is the production of heat-insulating mineral wool by the centrifugal-roller method,
in which the forming jets of melt are coated with a layer of bonding material. The practi-
cal applications of flows of composite jets has motivated the experimental and theoretical
study of such jets [1, 2]. In this work a numerical method of collocation is employed to
calculate the flow on the starting section of jet formation [3-6].

1. A cylindrical coordinate system r, 8, z whose z axis is oriented along the symmetry
axis of the jet and whose origin is positioned at the center of the outgut opening is intro-
duced. The radius of the output opening R« and the velocity Ux.= Q/(wR«) (Q is the volume
flow rate of the jet) are chosen as the characteristic quantities. In the boundary-layer
approximation the stationary axisymmetric jet flow is described by the following system of
equations and boundary conditions {2, 3]:
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where x = z/Rs y = r/Raj H, and H, are the radii of the interface and the surface of the
jet, respectively; Uj, Vi, Wy are the axial, radial, and azimuthal velocity components,

where the index i = 1 corresponds to the interior liquid and i = 2 corresponds to the
exterior liquid; a, = 1} az = a. The dimensionless parameters are a = va/vi, A = pa/pis ¥ =
o2/01 (v,, V2, P1, and pa are the kinematic coefficients of viscosity and density of the
internal and external liquids; o, and 0, are the surface tension at the interface and at the
surface of the jet) and Re = UxR«/v,, We = p,U2R,/0,, Fr = Ui/(gR,) (g is the acceleration

of gravity). Here (1.1) is the equation of continuity; (1.2) and (1.3) are the equations of
motion for the axial and azimuthal velocity components; (1.4) expresses the regularity of the
solution on the axis of the jet; (1.5) and (1.6) include the kinematic relations and the con-
ditions of continuity of the tangential stresses at the interface and on the surface of the
jet as well as the equality of the velocity components at y = H,. It is assumed that the
pressure distribution in the transverse section is constant for each liquid; this condition
holds in the case when the azimuthal velocity is low compared with the axial velocity. The
choice of characteristic quantities ensures unit dimensionless flow rate of the jet.
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TABLE 1

Number

of cal- | &10% [Re-10% U"J Re | We |Fr | e t 1 | %a

::ulationlm /sec m n/se
1 0,0628 1 2 200 20l o | 3 0 0 0,5 40
2 0,0628 | 0,5 8 400 | 160/ oo | 3 0 0 0,5 80
3 0,0628 | 0,2 50 | 1000 | 2500] oo | 3 0 0 0,5 {200
4 0,0628 | 0,5 8 400 | 160 oo | 2 0 0 0,5 85
5 0,0628 | 0,5 8 4001 160} oo | 3 0 —0,05 10,5 | 100
6 0,0628 { 0,5 8 400 | 160 0o ] 3 -—0,05 —0,05 10,5 80
7 0,0628 | 0,5 8 400 | 1601 40| 3 0 0 0,5 55
8 0,0628 | 0,5 8 400 | 160 oo | 3 0 0 0,25 125
9 0,0628 | 0,5 8 400 | 160 oo | 3 0 0 0,75 80
10 6,28 10 2 | 2000 200| o | 3 0 0 0,5 | 400
11 6,28 8 | 31212500 | 39| oo | 3 0 0 0,5 | 500
12 6.28 6 1556133401 928l 0o | 3 0 0 0.5 | 660

The flow of the jet is studied as a Cauchy problem with the conditions formulated below
at x = 0. The stream surfaces y = hp(x), n =1, ..., N, are introduced for the numerical
solution; in addition, h, = 0, hy = H,, hy = Hz, and the values of the velocity components
on them uy(x) = Ui(x, hp(x)), wp(x) = Wi(x, hp(x)), n =1, ..., M, un(x) = Uz(x, hp(x)),
wn(x) = Wa(x, hp(x)), n =M+ 1, ..., N. For the variables hyp, up, and wy we obtain from
(1.1)-(1.6) a system of ordinary differential equations [3, 4]:

dh dh 1 1
puitt R _n_ ho (U — Uy -
Tz 0, dz 2hu, - hn—](un L — u") L[ 1y (Un n 1) +
du du _l) :
+ Zh,,_lu,,_l] oy ( n—]) (hn ar = n—1 “77;‘_/ }, n=2, ..., N,
dup, 1 1t dhy yp dhy ,
W:Tn[Fr-{-We(h? “dz +h2 dr + ), n=1 . M,
du,, 1 1 y dhy (1.7)
a1 +ar ne=M+1, .., N, )
dr  wu, (Fr *war AWeh?, L
dw, s, w, dh, s 1 62Wh 1 oW, w,
Iz = ndin — h—n' 'E's =T | o0 yehy | Pn 0¥ lu=hn o R2 [
U ou
Thn=i,(“‘—‘2k —1—5 ), k=1 n=2,...,i‘{,
Re \ gy yehp h, 9y ly=h,
9 0*U dw,
o= 2 n= M- == 1 — =
h=Zin=M+t N Ty =gs ! 0,

where the expression for T, was obtained by expanding the function U, in a Taylor series
near the axis of the jet,

The tau approximation [6] using shifted Chebyshev polynomials of the first kind @r(n),
defined by the formulas [7] ¢, =1, @, =20 —1, ¢n = 20295y — $r-20 k = 3, 4, ..., is.
employed, as done in [5], for calculating the y derivatives in (1.7). In sc doing, two

approximating functions are constructed for the components of the velocity, for example, the
axial component,
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the expansion coefficients in which ax(k = 1, ..., N + 5) are the solutions of the system
of linear algebraic equations
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where (1.8) expresses the fact that the functions ¥,, ¥. equal the values of the axial velo-
city on the stream surfaces; (1.9) is the approximation of the boundary conditions on the
axis and on the surface of the jet; (1.10) is the approximation of the continuity of the
tangential stress on the interface; and, (1.11) expresses the fact that the equations of
motion of the liquids at the interface must match.

After the values of ay(k = 1, ..., N + 5) are determined the coefficients in the series
expansion of the y derivatives of the functions ¥,, ¥, in Chebyshev polynomials can be cal-
culated and the values of these derivatives on the stream surfaces can be determined for
substituting into (1.7) [5].

To implement this algorithm it is necessary to calculate the values of dhy/dx, dhy/dx,
appearing in (1.8)-(1.11). To this end we obtain from (1.7) a system of linear algebraic
equations of the form

dh dhpy dhy

dh_ _

byt Aot dn g =en, =1L N, (1.12)
by =0; ¢, =0 (k=M+1, ..., N); the coefficients in (1.12) depend on the values of the
y derivatives of the axial component on the stream surfaces. A system of two implicit
linear algebraic equations for determining dhy/dx, dhy/dx follows from (1.8)-(1.12). We

note that (1.12) is solved by the sweep method [8].

The difference between the algorithm for calculating the derivatives of the azimuthal
velocity and the algorithm described above lies in the use of the (M + 1)-st polynomial to
approximate the velocity of the interior liquid; in addition, the condition of matching of
the equations at the interface does not contain the values of dhy/dx, dhy/dx.

The equations (1.7) must be supplemented by the initial conditions

Bal0) = =T H, (0), un(0) =Uso(ha)y wa(0) = Wiglha)y m=1, ..o M,

o (0) = H,(O) + (1 — H, (0)} 53— ’;’, un (0) = Usg (hn),  wn(0) = Wy (har),

n=M+1, --nN’

where Uio, Uzo, Wio, Wao are fixed functioms; H,(0) is the starting radius of the interface.
The equations (1.7) are integrated by the Adams—Bashfort method with second-order accuracy

[61.

2. Because of the action of viscous forces, a nearly constant profile of the axial velo-
city is formed as x increases, irrespective of the form of the initial conditions; for a
spiral flow the dependence of the azimuthal velocity on the radius approaches a linear depen-
dence. In the cases Fr = « and Fr # =, vq; = A/[y(1 — )] the problem (1.1)-(1.6) has the
solution
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Here o= 0.Hi/H%; g, =2 S‘ yU,o8y; Hygo o, are the radius of the jet and its angular rota-
0

tional velocity as a rigid body for some value x = xg; the solution (2.1) is valid for

= x,. The dependence H.(x) is determined from the condition
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The length of the section of formation of the uniform solution depends on the parame-
ters Re, We, Fr, a, A, Y, the flow rate q,, and the starting profiles of the velocity com-
ponents. In studying the dependence of x; on the parameters we studied the case
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where h = H,(0); the form of the starting axial velocity is determined by the parameter €2
and that of the azimuthal velocity is determined by the parameters t,, t.. Table 1 gives
for a jet, whose interior liquid is water and the exterior liquid is benzene and for which
a=0.709, x = 0.752, y = 1.5, the values of the parameters and the computed corresponding
lengths of the section of formation of the uniform solution x,. As the criterion for cal-
culating x; we chose the condition Il ~ f| < 0.05. Here f = u/Uap(n = 1, ...,Pg, wn/ (wihp)

L
(n = 2, “ee ,M) N Un/Uzm, Wn/ (wzhn) (n = M, aoey N) , Umin/Umax, U)min/(l)max, l/xm = 712? j‘ yl/’l(iy,
1
H, !

9
an=:ﬁ;——5; be@dy are the average values of the axial velocity for the interior and
2 Y of

1
exterior liquids, w, = wy/hy, w2 = wy/hy are the angular rotational velocities of the liquid
on the interface and on the surface of the jet, Uyip and Upax, wmin and wpgx are the minimum
and maximum values of U,p, Uzp and w,, wz, respectively. The value of xg was calculated
with an accuracy of Axg; = 5 for calculations 1, 2, 4, 6-9 and Ax, = 20 for calculations 3,
5, and 10-12.

Figure 1 shows for calculation 5 the dependences H,, H., Uim, Uzp, which correspond to
the curves 1-4. For the same calculation Figs. 2 and 3 show the profiles of the velocity
components; in addition, Fig. 2 shows the axial component for x = 0, 20, and 60 (lines 1-3);
Fig. 3 shows the azimuthal component for x = 0, 20, and 90 (curves 1-3); in both cases the
profiles in the interior liquid are denoted by a solid line while the profiles in the
exterior liquid are denoted by the broken line.
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Thus the proposed method for calculating flows of composite jets permits finding, aside
from the value of x4, the characteristics of the flow in intermediate sections and their
limiting values, making it possible to study later the stability of the given flow.

In conclusion we note that the method can be extended to the case of a multilayer jet,
but the larger number of implicit linear differential equations in this case for determining
the x derivatives as a function of the ordinates of the interface surfaces makes it neces-
sary to execute the approximation algorithm repeatedly for a fixed value of x; this substan-
tially increases the computing time.
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INVESTIGATION OF NATURAL CONVECTION AND
CONVECTION STIMULATED BY LOCAL IRRADIATION
IN A THIN LAYER OF EVAPORATING LIQUID

V. V. Nizovtsev UDC 532.516:772.96

Capillary convection in low-viscosity liquids is observed with surface-tension differen-
tials of the order of 0.1 mN/m. It appears in many technological processes. Convection
leading to the formation of a relief on the boundary of the interface arises in a layer of
drying paint and varnish or glassy enamel as well as accompanying extraction in liquid—
liquid systems or rectification of multicomponent mixtures [1-4]. Fluctuational surface-
tension gradients initiate convection.

The high sensitivity of liquids to shear stresses has been employed to solve technical
problems, such as separation of impurities [5], obtaining relief photographic images 6, 71,
deposition of matter at a fixed locationm of a substrate [8], or surface doping of metals fo1.
The technical solutions listed are based on capillary convection, controlled by the thermal
action of radiation [10, 11]. 1In spite of the wide range of possible applications of forced
capillary convection virtually no quantitative data on convection under the action of radia-
tion and its comparison with spontaneous convective processes have been published. The
results of a study of capillary-convective instability of a layer of liquid in the regime of
natural evaporation and under conditions of local heating by low-power laser radiation are
presented below.

1. Materials and Methods. Convection in solutions of crystal violet dye in polar
organic solvents was studied (see Table 1). The dye contrasted the image of the relief on
the surface of the layer and simultaneously functioned as a strain-active and light-absor-
bing additive. Thermal capillary convection was induced by the action of a Gaussian beam of
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